ECE: Electrical & Computer Engineering

ECE 5105 Electromagnetic Waves

Fall 2016 textbook list

The Fall 2016 ECE textbook list is available online for students.

Current Prerequisites & Course Offering

For current prerequisites for a particular course, and to view course offerings for a particular semester, see the Virginia Tech Course Timetables.

Return to course list

ECE 5105 Electromagnetic Waves (3C)

Fundamentals of plane wave propagation, reflection, and transmission; basic theorems, equivalent currents, and Green's theory; radiation fields generated by current sources.

What is the reason for this course?

The topics covered in this course are fundamental for graduate students in the area of electromagnetics. This course builds upon undergraduate electromagnetic courses and enables the students to gain an in-depth understanding of fundamental electromagnetic concepts, theorems, and analytical techniques. The course also provides an introduction to numerical techniques that are becoming increasingly important in solving electromagnetic wave problems in complex geometries. Many topics covered in this course are essential for graduate courses in areas such as radio frequency and microwave engineering, antennas, photonics, and space sciences.

Typically offered: Fall. Program Area: Electromagnetics.

Prerequisites: Graduate Standing.

Department Syllabus Information:

Major Measurable Learning Objectives:
Course Topics
Topic Percentage
1. Maxwell's Equations and Plane Wave Solutions: a) Differential and integral forms, boundary conditions; b) Constitutive relations and material properties; c) General form of the uniform and non-uniform plane wave solutions; d) Polarization, Poynting vector, direction of propagation, and energy considerations; e) Phase velocity and group velocity 20%
2. Reflection and transmission of plane waves by planar boundaries: a) Decomposition into TE and TM polarization; b) Applying the boundary conditions, Snell's laws; c) Total internal reflection and evanescent waves; d) Fresnel reflection and transmission coefficients, energy considerations; e) Applications 20%
3. Basic electromagnetics theorems: a) Duality; b) Reciprocity; c) Uniqueness & image theory; d) Equivalence theory 20%
4. Application of EM theorems: a) Construction of equivalent sources and applications; b) Green's theory; c) Dyadic Green's functions 20%
5. Radiation by sources: a) Current to potential to fields; b) Deriving the free space Green function; c) Solution for radiation by an elemental dipole; d) Zones of radiation and behavior of the fields; e) Behavior of the far and Fresnel zone fields 20%

Return to course list